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We consider a network of nonlinear dynamic elements with nonlinear, global coupling, subject
to noise and a time-periodic signal. The system response, characterized by its signal-to-noise ratio,
is computed via approximate analytic techniques and precise numerical simulations. We find that
cooperative effects arising from the noise and coupling lead to an enhancement of the response of

the network over that of a single element.
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I. INTRODUCTION

The presence of a weak periodic signal in a noisy
nonlinear dynamic system is known to lead to coopera-
tive stochastic-dynamic effects, including stochastic reso-
nance. Stochastic resonance (SR) is a cooperative nonlin-
ear phenomenon wherein the signal-to-noise ratio (SNR)
at the output of such a dynamic system, driven by a
weak deterministic modulation (which we shall take to
be time periodic), can actually be enhanced by increas-
ing the noise. For example, consider a bistable dynamic
system where the only information output is a record of
switching events between the stable states (attractors) of
the potential function underlying the dynamics. When a
periodic signal is applied, its effect is to “rock” the poten-
tial, alternately raising and lowering the potential wells.
If its amplitude is very small compared to the height of
the potential barrier, the periodic signal will not be able
to induce switching. However, in the presence of even
small amounts of Gaussian noise, there will always be a
nonzero switching probability. Since the switching prob-
ability is greater when the system is in the “elevated”
well, which occurs when the signal is at its extrema, one
finds that the noise-induced switching events may acquire
some degree of coherence with the deterministic signal.
The power spectrum obtained from the time-series solu-
tion of this system shows sharp peaks at the driving fre-
quency and its odd harmonics (for the case of a symmet-
ric potential), superimposed on a Lorentzian-like noise
background. A plot of SNR vs noise strength results in
a curve where the SNR first increases up to a maximum
value and then falls with increasing noise. In the litera-
ture, the SNR vs input noise strength profile is usually
taken to be the hallmark of SR. A good overview of the
SR phenomenon may be found in recent review articles
[1] as well as the proceedings of recent workshops on the
subject [2].
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A linear filter is known to be the optimal filter for de-
tecting a known sinusoidal signal in Gaussian noise [3].
Despite this, the signal-processing utility of SR has re-
ceived considerable attention of late due primarily to the
notion that in a suitably optimized nonlinear system the
gain, which we define as the output SNR (in dB) minus
the input SNR, might be positive [4,5]. It is now gener-
ally recognized that for a dynamical system comprising a
single nonlinear element subject to broadband noise, this
is not true [6,7]. However, when the noise background
is nonwhite, e.g., narrow-band harmonic noise [8,9], pos-
itive gains have been observed. Positive gains have also
been observed by Grohs et al. [10] in an experiment in-
volving optical bistability, with similar noise. In addi-
tion, there exists an important class of systems in which
it might be possible to obtain enhanced signal detectabil-
ity in the presence of Gaussian band-limited noise. This
is the class of nondynamical or threshold systems. In
these systems, the response is characterized by crossings
of a threshold, in contrast to the (usually bistable) po-
tential dynamics that underpins traditional treatments
of SR. Threshold detectors and the zero-crossing prob-
lem have been an integral part of the engineering and
communications literature [11]. Recently, there has been
an upsurge of interest [12,13] in the response of threshold
systems due mainly to the realization that they might,
in fact, provide a reasonable characterization of the dy-
namics of neurons and be applicable, for instance, in the
physics of nanoscale detection or switching elements.

In this work we consider the performance, quantified
by SNR, of a network of nonlinear dynamic elements with
nonlinear, global coupling. These coupled systems were
originally proposed as models, under the appropriate con-
ditions, for neuronal interactions [14]. In this connection
it is important to state that although neurons are not, in
general, bistable dynamic elements, the coupled bistable
dynamics of the form considered throughout this work
(i.e., bistability between two fixed points) provides a good
model for describing the interaction, in a coarse-grained
sense, between the noise and stimulus under conditions
that approximate those encountered in real neurons. In
fact, bistable dynamics have been shown to account for
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many of the experimentally observed features in the dy-
namics of real neurons [15]. Hence, the ideas developed
in this paper should find application in a wide variety of
coupled nonlinear dynamic systems, in physics and biol-
ogy, subject to deterministic stimuli and noise.

Our work is a modification of our earlier work [14] to
examine a situation wherein the external sinusoidal sig-
nal plus its attendant broadband noise background is in-
cident on every element in the array. The coupling be-
tween the elements is taken to be of the sigmoidal type to
better enable us to draw the connection with analog neu-
ral networks. Analytic treatments of the response of such
systems are possible only under very restrictive approx-
imations. In this work, we consider a system configura-
tion that lends itself to an approximate treatment via the
slaving principle of Haken [16]. The array is taken to con-
sist of a single bistable “reference” element coupled to an
ensemble of “bath” elements that evolve on significantly
faster time scales than the reference element. Hence, the
long-time system behavior is well approximated by the
dynamics of the reference element, it being assumed that
the bath is never far from equilibrium. Under these con-
ditions, the dynamics of the reference element can be
derived in closed form and existing theories [17,18] ap-
plied to the computation of the output SNR. In addition
to a theoretical characterization of the dynamics (car-
ried out separately for the cases of a bath composed of
monostable and bistable elements), we show the results
of detailed numerical simulations on the coupled system.
The results show that replacing a single nonlinear ele-
ment by a globally coupled array leads to a significant
enhancement in the output SNR. Although the theoreti-
cal treatment is restricted in its regime of applicability, it
provides a useful qualitative guide for selecting coupling
coefficients that maximize the output SNR, even when
the conditions necessary for its quantitative validity are
violated.

In Sec. II, we describe our model and derive the ef-
fective dynamics that characterize the network. Section
IIT contains discussions of the output SNR under various
operating scenarios. In particular, we consider the opti-
mum coupling for maximizing the output SNR, and we
test the limits of validity of the theory. We introduced
these results in preliminary form in [19].

II. COUPLED NONLINEAR DYNAMIC
ELEMENTS AND STOCHASTIC RESONANCE

We consider an ensemble of nonlinear dynamic ele-
ments, each of which is subject to the same periodic sig-
nal embedded in Gaussian white noise \/E{ (t) having
mean zero and autocorrelation D(£(¢)¢(t + 7)) = Dé(7):

U;

C-L"Ll,i = —E

N
+ Z Jij tanhuj + VDE(t) + gsinwt, (1)

j=1

the dot denotes the time derivative. Systems of the form
(1) have been used to describe connectionist type neural
networks [20] with u; denoting the activation function of

the ith element (analogous to the membrane potential
of real neurons), and C;, R; denoting the input capac-
itance and transmembrane resistance, respectively. In
neural network applications, the coupling coefficients J;;,
known as synaptic efficacies, are usually determined via
a learning rule.

In the absence of coupling and forcing, the individual
elements of the system (1) are bistable for J;; > (R;C;) ™!
and monostable otherwise. The motion of u; can be vi-
sualized as motion in a potential U;. For J;; > (R;C;)™ 1,
the potential has wells at u; = u;,+ separated by a max-
imum at u;,; otherwise, it has a single well at u;,.

In general, the solution of the above system must be
found numerically; however, an approximate analytical
formulation for the response of the reference element u;
may be obtained if we apply some conditions on the al-
lowable parameter values. The bath elements must react
at a rate much greater than the rate of change of the ref-
erence element or the forcing signal. Therefore, the rate
for probability to equilibrate at the bottom of the bath
elements’ potential wells must be much greater than the
rate at the bottom of the reference element’s potential
well and the rate of the forcing,

U/ (¢ist) or U (us) € Uy (u164),w, (i>1). (2)
Furthermore, the cross coupling and forcing terms should
not be so large that they overwhelm the basic monostable
or bistable dynamics of the elements,

g, Y |Jij| < max(1/R;, |Jiil). (3)
iFi

These conditions constitute the cornerstone of the adi-
abatic elimination procedure (AEP) which we use to de-
rive a “reduced” one-body dynamics of the reference ele-
ment ;. The AEP is well rooted in the statistical physics
repertoire [16,21,22]. As we shall see, the AEP yields a
description that agrees well with the full dynamics in
restricted regimes of parameter space. Outside these
regimes, the AEP often provides a qualitative description
of the system dynamics adequate to guide the selection
of the coupling coefficients J;; for optimum performance
of the network.

An adiabatic condition on w analogous to that in (2)
is also essential in deriving the theoretical expressions
[17,18] for the power spectral density of the reference
element motion, from which we obtain SNR’s,

U{’(Ulsi) < w. (4)

This condition enables one to write down a simple ex-
pression for a Kramers rate based on an adiabatically
modulated potential barrier height. For the Kramers
rate expression to be valid, the modulation of the po-
tential barrier height must be much less than the noise
spectral density, which in turn must be much less than
the unmodulated potential barrier height Uy,

gc € D < Uy, (5)

where c is half the separation of the minima of the un-
modulated potential. The condition on the weak forcing
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amplitude g also ensures that the modulation of the po-
tential is not strong enough to force the reference element
to switch between its two potential wells without the help
of the noise. This condition of no deterministic switching
is an important ingredient of stochastic resonance. The
condition also allows the use of perturbation theory in
the power spectral density calculation.

The theoretical power spectral density calculation is
based on motion between the potential wells; it ignores
motion within the wells. Therefore, it is not valid for very
low noise strengths D, where intrawell motion dominates
the dynamics.

The procedure for simplifying the system (1) has been
described elsewhere [14,23] for somewhat different system
configurations. In particular, in [23] we considered fluc-
tuating coupling coefficients, monostable bath elements,
and no deterministic signal. In [14] we considered inde-
pendent additive noise at each element.

We now outline the procedure as it pertains to the sys-
tem at hand. The starting point is the N-body Fokker-
Planck equation (FPE) for the probability density func-
tion P(uy,us,...,unN;t),

opP
a2

where the drift coefficient is

e (@P)+ 5 Z | ©®

Q,-(ul,uz, Ce ,uN) = —% + J;; tanh u;

+ Z Jir tanhug + gsinwt.  (7)
k#i

We factor the probability density function,

P(u17u2»"'qu)=h(u27u35~~"uN Iul)g(ul) (8)
(suppressing t to simplify our notation), where h is to
be interpreted as a conditional probability density for
finding uj-1 given u; (both h and g are normalized to
have unit weight). The constraints (2) and (3) imply
that we may substitute the factored probability density
function (8) into the original FPE (6) and separate the

slow variable u; from the fast one(s) [14,16,23],

Oh 7] D 8%h
R »Zl T Bu; (Qih) + Z 2 Ou;0u; |’ )
g D 9%
Y A + g (0)
with the kernel A(u;) defined by
A(ug) = /.../h(U2,U3,...,’lI,N | w1)
XQl(ul,uz,...,uN)dusz3~--duN. (11)

In deriving (9) and (10) we have assumed that deriva-
tives of h with respect to u; may be neglected compared
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to derivatives with respect to u;~1. This follows from the
slaving assumptions (2) and (3) [16].

We first must solve (9) in the long-time limit. Equa-
tion (2) allows us to treat uy as varying only adiabati-
cally. For the purposes of integrating (9), therefore, we
assume the modulation term to be constant. Far more
serious is the lack of detailed balance [21] when the di-
mensionality of (9) exceeds unity. In general, a steady
state (potential function) solution of (9) cannot be found
for this case, although a local-equilibrium assumption for
the bath permits us to write down an equilibrium bath
density function as a superposition of Gaussians [23]. In
what follows, we explicitly derive the solution for the
N = 2 case, treating separately the cases of a mono-
stable and bistable-bath element. We then discuss the
extension of this solution to N > 2. We shall set C; =1
for convenience.

The long-time solution of (9) may be expressed as the
negative exponential of a potential function,

2

D
SU) = -;% — 235 In(cosh uz)

— 2upJy1 tanh vy — 2usgsin wt, (12)

which has two minima for Jp2 > R5 ! and J,; and q suffi-
ciently small (3); otherwise it has only one minimum.
The extrema may be determined by expanding about
their counterparts for the uncoupled case [assuming cou-
pling small compared to the self-coupling coefficient J32,
(3)]- We find that at

RyJ5; tanhuy + Ragsinwt

(13)

Uy =

the potential (12) has a maximum if double welled and a
minimum otherwise. If double welled, the potential also
has minima at

R2J21 tanh Uy — qu sin wt
1-— JzszSeChz’uZo

Ugs+ R FU20 + , (14)

with tuge =~ +J22R;tanh(J22R2) being the minima in
the bath element potential in the absence of coupling and
forcing.

Now consider the monostable-bath case (Ja2 < R31'),
for which the potential has a minimum at uy,. We may
replace the expression (12) by a second-order expansion
about ug,,

(ug — ugy)? 82U

U(u2) 2 Ou

~ U(uzu) — (u24), (15)

thereby obtaining for the normalized bath probability
density function

\/a/ﬂe_a(“z_“’")z, (16)

where a = D_l(Rz_1 — ngsechzuzo). It is apparent
that we have replaced the actual bath probability den-
sity function by a Gaussian centered at the stable fixed
point, since the bath element may be assumed to be at
or near its adiabatically steady state because of the slav-
ing assumption. After expanding tanhu, about uz, we

h(uz ‘ ul) =
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can evaluate the integral in (11) (the linear term in the
tanh up expansion does not contribute to this integral).
This leads to “effective” or reduced dynamics correspond-
ing to the slow variable u; in the decoupled form

@y = A(uy) + VDE(t), (17)

where

h%us,
Afw) = 2 [Ju b T (1 _ mé.._)} tanh

+gsinwt. (18)
It is possible to simplify further this expression by sepa-
rating out the trignometric function; this is achieved by
an expansion of sech?uy, for small q. After some calcu-
lation, we finally arrive at a more attractive expression
for A(uq),

Aur) = —;;—11 + (J11 + J12J21b2) tanh u,y

+(1 + J12b2)gsinwt,

(19)

where

DRz/2 ) . (20)

R,
b2 = 1-

1-— J22R2 ( 1-— J22R2
Subject to the constraints employed in the derivation,
the reduced dynamics (17) should reproduce the dynam-
ics of the coupled system on a coarse-grained scale, for
the case of a monostable bath element u;. By this we
mean that individual trajectories u;(t) derived from (17)
and the full dynamics (1) will not necessarily follow one
another, but averaged quantities such as long-time prob-
ability density functions and power spectra should be the
same for the two descriptions, in the appropriate regimes
of parameter space.

For the case of a bistable bath element (Jz3 > Rz_l),
the derivation of the reduced dynamics follows an anal-
ogous route, except that we now expand the potential
function about the two minima (14). We are effectively
assuming that at long times the bath probability density
function consists of two Gaussians centered at the min-
ima. After some calculation, we readily obtain for this
case,

eU(uzst) g—a+ (uz—u2s4)? + eUl(uzs- )e—a-(uz—uz,-)?

h(UZ ’ ul) =

where we have defined ax = D™ (R;* — Jagsech®ug,y).
As in the monostable case we carry out an expansion
of tanh u, about the minima and carry out the integra-
tion in (11). It is instructive to write down explicitly
the result of this integration, because it requires further
simplification before it can be cast into a form that is
suitable for our purposes. We obtain

I E/ tanhuzh(uz | ’U,]_)d’llq

— o0

1 T U(uzer) sech2u28+
= /e "+ tanhuzey (1 — ————
% a+e anh ug, 20,
1 [7 hZug,
+.7\7 t—;—r_—eU("“*) tanh ug, (1 — %—) , (22)

where N is the normalization of the density function [de-
nominator of (21)]. Equations (2) and (3) generally en-
sure sech®us,+ < 2a., guaranteeing convergence of the
integral 1.

In the interest of analytical tractability we now assume
that the minima wusy,4+ are very close to their locations
tuyp for the uncoupled and unforced case; i.e., we assume
weak coupling and a small modulation amplitude g, as
was done in the derivation of (19) for the monostable-
bath case. To a first approximation, therefore, we replace
Uze+ by Fugo in the expression for the integral I. After
some calculation we find,

Vr/areVet) 4\ /rr/a_eU(u2s-) ’

(21)

Auy) = ——%11 + Jii tanhuy + gsinwt + Jiz2(tanhugp)

D 2
X (1 — Ra/ 5 SeChZ'U,z())
1-— JzszseCh u20
x tanh [2D_1(J21uz0 tanh u; + qugg sin wt)] .
(23)

A further simplification (strictly valid only in the large
noise case) yields an expression having the structure of

(19),

A(ug) = _%1; + (J11 + J12J21b5") tanh uy

+(1 + J12b8) g sinwt, (24)
where
b‘z’i = 2D (ugo tanh ugp)
X (1 - J;:I}?zzs/ezchzuzo sechzuzg) . (25)

For the bistable case, therefore, the reduced or effective
dynamics are given by (17) with (23) or (24).

For future consideration, it is convenient to write the
reduced dynamics (17) in the form

in = - 200 B, (26)

where we have introduced the potential function that af-
fords us a more elegant mathematical treatment of the
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dynamics,

U(u1) = 2ou? — Blncoshu; — uydsinwt, (27)
and we identify «, B, and é with the appropriate ex-
pressions in the kernel A(u;) given by the reduced forms
(19) or (24), depending on whether the bath element
is monostable or bistable. Therefore, we have defined
a = (R,C;1) ! and, if the bath elements are monostable,

1
B = a <J11 + ZJIiJilbi) (28)
>1
and
- 4
6= 0 (1 + Z Jlib,) , (29)
i>1
where
R;Jyidn DR; )
bi = — 5 .
1— JaR; (1 2C;(1 = Ji,-Ri)) @>1).  (0)

We have included the C; for generality.

Based on our previous work [23] we feel that (26)—(29)
adequately describe the effective dynamics for the case of
monostable bath elements for N > 2. However, for the
bistable-bath case, such a generalization to the N-body
case has not yet been derived.

The potential U(u;) will be bistable for 8 > a, which
is the case that is considered throughout this work. It
is centered at u; =~ 0, with minima located at cy =~
:|:§ tanh g The modulation shifts these extrema slightly,
and the shift can be computed by an expansion analo-
gous to that carried out above for the bath element. The
height of the potential barrier depends directly on the
parameter 3. It is worth noting that the effects of the
bath and noise enter directly into the “effective” coefli-
cients 8 and §. This fact will be exploited in the fol-
lowing sections to optimize the system response. Note,
finally, that terms arising from intrabath coupling are
O(R;C;R;C;/(R1C1)?) (3,7 > 1) or higher and are neg-
ligible; they have been excluded from (28) and (29). It is
also important to realize that although the bath density
functions (16) and (21) yield reasonably good long-time
behavior in the strictly monostable- or strictly bistable-
bath regime, they do not provide a good description of
the bath dynamics in the transition regime 8 =~ «. In this
regime, the bath is, in fact, undergoing a pitchfork bifur-
cation that characterizes the transition between mono-
and bistability, and only a complete nonequilibrium char-
acterization of the dynamics would be expected to yield
good results.

Having obtained the reduced dynamics (26), we may
apply the adiabatic theory of reference [17] and com-
pute the power spectral density (PSD) of the variable
u1, whence the output SNR may be obtained. The spec-
trum consists of a broadband noise background and a
é-function spike at the signal frequency,

S(Q) = N(Q) + S6(Q — w). (31)
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Harmonics, which would appear at odd multiples of the
signal frequency, are not captured by this first-order ap-
proximation. The one-sided, time-averaged power spec-
tral density (in terms of angular frequency) of the noise
is

1 8(ro¢)? 8roc?
Q)= —|1- .
N 2 [ 4ri + w? | 4r + Q2 (32)
The signal power is
_ 8(ro¢c)?
b pat (33)

Here c is half the separation of the minima of the un-
perturbed potential, { = dc¢/D is a perturbation theory
expansion parameter, and r¢ is the unperturbed (6 = 0)
Kramers rate, (27)~1,/|U"(0)|U" (c) exp(—2Us/D). Uy
is the height of the potential barrier separating the two
wells of the bistable potential (measured from the bot-
tom of the wells) when the modulation term, u1d sinwt,
vanishes.

The output SNR, R, is the ratio of the signal and noise
powers in a narrow frequency range of width Aw centered
about the signal frequency w,

_ S
~ AwN(w)’

We use this definition of SNR, rather than taking the
ratio of all of the signal power to all of the noise power,
because it is more relevant to signal processing applica-
tions.

Note that effects due to the noise and deterministic
modulation appear in both the signal (33) and noise (32)
terms, unlike the case for a linear system. Furthermore,
by increasing the signal amplitude the first factor in the
noise term can be made smaller in magnitude so that one
obtains a decrease in the background noise power. In-
creasing the noise strength increases the Kramers rate ro
while decreasing the expansion parameter (. The inter-
play of these two effects leads to the resonancelike curve
for the SNR vs D. Although the theory is only strictly
valid for D <« Uy, it correctly predicts the location of the
maximum in the SNR vs D curve at D = Up.

In the following sections we present the results of large-
scale numerical simulations of the fully coupled equations
(1) as well as the reduced system. Our primary goal is to
compute an output SNR vs input noise curve while ex-
amining the effects of increasing the number of elements
N. We find that, for the monostable-bath case, one may
straightforwardly extend our expression (19) to the case
of more than one bath element, obtaining (28) and (29).
This is not surprising in light of our previous calcula-
tions [14] in which we derived the long-time solution of
the (N —1)-body FPE corresponding to the bath density
function. For the case of the bistable bath, the extension
to more than one bath element is not straightforward. A
detailed calculation (along the lines of [23]) for the bath
density function in the N > 2 case is beyond the scope
of this paper. We have, however, numerically compared
a simple generalization of the bistable-bath results (21)-
(24) for N > 2 with simulations of the full dynamics (1);

(34)
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the results seem to indicate that a straightforward gen-
eralization (as in the monostable-bath case) to N > 2
yields results in agreement with numerical simulations
only for low to moderate values of the forward coupling
coefficients. This is illustrated later in this work.

III. NUMERICAL SIMULATIONS:
THE OUTPUT SNR

To supplement our analytical calculations, we also
computed the system’s output SNR via numerical inte-
gration of (1) using the modified Heun method [24]. In
our case, the modified Heun algorithm actually reduces
to the Euler-Maruyama scheme,

ui(t) = u;(t — At) + [_u’_(t_:__Ai)
R;
N
+ Z Jijtanhu;(t — At)

i=1

+gsinw(t — At)| At + VDAW, (35)

where AW is a “Wiener increment,” i.e., the change in
the value of a Wiener process over a time interval At: a
normally distributed random number with mean zero and
standard deviation v/At. As stated in the preceding sec-
tion, coupling between bath elements should not greatly
affect the system. Therefore, we also leave out coupling
between bath elements in our simulations. No*< that this
is never a factor for the N =1 or N = 2 sii.. - tions.

The theory applies to a system driven by ideal white
noise, which has a constant power spectral density at all
frequencies. In numerical calculations or physical experi-
ments, there is always a limit to the bandwidth of signals
considered. For example, when the time series represent-
ing the system variables is sampled every At seconds,
the highest frequency that can be represented is known
as the Nyquist frequency and is equal to one half the sam-
pling rate, giving wNyquist = ®/At (in terms of angular
frequency).

In the case of the continuous-time equations, the one-
sided power spectral density (in terms of angular fre-
quency) of the noise has a height D/x for all frequencies,
while in the numerical simulations we approximate this
physically idealized and unrealizable signal by a noise
signal with a flat spectrum of height D/x from 0 to
Weut = WNyquist and a height of zero outside this range.
Note that ideal white noise is an infinite power signal,
and, therefore, physically unrealizable, while the power
in the band-limited noise we use in the simulations (ac-
tually the variance) is equal to the area under its PSD
curve: 0% = wey D /7.

There are several time scales involved in our system:
the driving frequency, the relaxation rates in the slow
and fast elements, and the Kramers rate in the slow and
fast elements. The fact that we have slow aud fast ele-
ments with widely separated time constants nplies that

we have to consider a wide frequency bandwidth. Fur-
thermore, we wanted to approximate white noise condi-
tions, and we determined that the system was sensitive
to noise energy at very high frequencies. Therefore, we
generated extremely finely sampled time series with a
time step such that wnyquist = 4096w. To avoid aliasing
we maintained this sample rate throughout our compu-
tations. We also convolved the time series with a Welch
window before computing the power spectra. Figure 1
shows the effect of noise bandwidth on output SNR. To
generate this figure, we low-pass filtered the noise while
keeping our time step size constant.

The small step size and the fact that we needed well-
averaged PSD’s from which to compute our SNR’s re-
quired that we use a supercomputer. We chose the Intel
Paragon, and distributed the job of generating time se-
ries and computing 1024 power spectra over, typically,
32 — 128 processors working in parallel. For N = 2, a
32-point curve of SNR versus noise strength can be gen-
erated in a few hours. For comparison, on a workstation
(e.g., HP-Apollo 425T) with a moderately fast processor
this computation would require well over a week.

First, we consider the case J; < (R:;C;)™! (i > 1)
where the bath elements, if uncoupled, would be mono-
stable. Guided by (29) and noting that b; > 0 (z > 1) we
choose J1; > 0 (¢ > 1) to increase the effective signal am-
plitude and thus the output SNR. Similarly, (28) implies
we can choose J;; < 0 (i > 1) to decrease 3, reducing
the effective barrier between the two potential wells. We
have given each J;>1,1 a unique value so that each bath
element evolves uniquely. However, setting all these cou-
pling coefficients equal (or, equivalently, setting N = 2

-4 multiplying J2; appropriately) gives very nearly the
same output SNR.

In Fig. 2, we show the output SNR [computed from the
time series uq(t)] for systems of one to ten elements, with
the bath elements being monostable. For comparison we
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FIG. 1. Sensitivity to noise bandwidth. Uppermost curve:
Input SNR. Lower curves (lowest to highest): output SNR
for noise bandwidths of 32w, 64w, 128w, 256w, and 4096w.
N =1. Ry = 0.0186916. C; = 1. Jy; = 216. q = 8.
w = 1.22522. Aw = w/32.
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FIG. 2. Monostable bath. Uppermost curve: Input SNR.
Lower curves (lowest to highest): Output SNR for N = 1,
2, 3, 6, 8, 10. Main plot: analog output. Inset: binary out-
put. (Main plot and inset have the same coordinate ranges.)
R;~1 = 0.001. C5>1 = 1. J;; = 100 ('L > 1). J1‘i>1 = 50.
Jz,3,..1001 = {—50, —55, —45, —52, —48, —54, —46, —53,
—47}. J;; =0 (4,5 > 1;¢ # j). Other parameters as in Fig. 1.

also plot the input SNR, (¢2/2)/(AwD /), with Aw be-
ing the frequency resolution of our power spectra. As
we increase the number of elements, the output SNR at
moderate noise levels also increases. This effect derives
from our choice of couplings. The inset illustrates an
even greater coupling effect: it shows the enhancement
in the output SNR of a hypothetical transducer that has
the same internal dynamics as our reference element but
has a binary (rather than analog) output, sgn[u; (¢)].

For the case of ), , Ji; not too large (e.g., for the
N =1, 2, and 3 curves of Fig. 2) the numerical sim-
ulations and the theory agree quantitatively. The out-
put SNR for these cases is well quantified by the the-
ory, and its maximum occurs at a critical noise value
approximately equal to the solution of the transcenden-
tal equation D = U(0) —U(c), as predicted by the theory
[17]. For larger values of } ., Ji; (N = 8, 10), the the-
ory, while still in qualitative agreement with simulations,
predicts an output SNR that exceeds the input SNR for
a range of noise strengths. In contrast, the simulations
show that the output SNR approaches but does not ex-
ceed the input SNR. The discrepancy between theory and
simulation can be traced to a breakdown of the conditions
required for its derivation.

Figure 3 compares the output SNR from systems of
one to three elements, with the bath elements chosen to
be bistable in isolation [J;; > (R:;C;)™! (i > 1)]. Asin
the monostable case, at moderate noise levels the output
SNR increases with N, causing the SNR gain to approach
unity.

Figure 4 illustrates the implications of systematically
abandoning the slaving principle in a two element sys-
tem by increasing R;. We see that increasing R, causes
the SNR gain to approach unity at moderate noise levels.
The highest output SNR in Fig. 4 occurs for R, = R;.
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FIG. 3. Bistable bath. Uppermost curve: input SNR.
Lower curves (lowest to highest): output SNR for N = 1,
2, 3. Main plot: analog output. Inset: binary output. (Main
plot and inset have the same coordinate ranges.) J;; = 1500
(¢ > 1). Other parameters as in Fig. 2. Note: sharp minima
of the N = 2,3 curves not fully resolved by points plotted.

This is intriguing because it suggests that arrays of ele-
ments with comparable time constants perform very well.
In fact, if we additionally set Jo2 = Jy1(= 216), so that
we have a pair of identical elements (distinguished only
by their opposite couplings to each other), we get an out-
put SNR only 1 dB lower at the SR maximum. This offers
promise for applications where arrays might be easier to
construct if all the elements are the same.

In Figs. 2-4 the output SNR exhibits the character-
istic dependence on the input noise that is taken to be
the hallmark of SR: At very low noise levels the effective
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FIG. 4. Abandoning the slaving principle by increasing the
time constant of the bath element until it equals that of the
reference element. N=2. Uppermost curve: input SNR.
Lower curves (lowest to highest): output SNR for Rz = 0.001,
0.002 45, 0.004 245, 0.008, 0.012, 0.0186916 (= R;). Main
plot: analog output. Inset: binary output. (Main plot and
inset have the same coordinate ranges.) Other parameters as
in Fig. 2.
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dynamics are bistable, but the state point is confined to
the bottom of a single well of the potential for many peri-
ods of the driving signal [17]. The shape of the potential
at the bottom of the wells is approximately parabolic,
i.e., that of a harmonic oscillator. Consequently, the re-
sponse of the analog-output system is nearly linear, with
the output SNR approaching the input SNR as D — 0.
The binary output SNR goes to zero as D — 0 because
without help from noise, the sinusoidal input is too weak
to cause interwell hopping. With increasing noise, the
output SNR goes through a minimum (for the analog out-
put) followed by a maximum where the noise enhances
interwell transitions in phase with the driving signal (SR)
[17]. Additional noise tends to minimize the potential
barrier’s significance, returning us to the scenario of mo-
tion in the bottom of a single, approximately parabolic,
potential well (albeit a much larger one).

Observe from (28) and (30) that for N > 1 the barrier
height of the effective potential (27) as well as the loca-
tions +c of its wells are functions of the noise. Hence, at
each point on the SNR curves, the noise systematically
alters the effective potential. However, the dominant ef-
fects on the potential are the result of the coupling, which
reduces the effective potential barrier height so that even
at moderate noise levels the potential tends to a parabola.
The effective dynamics may be said to be “linearized” by
a combination of the noise (an effect that has also been
observed in a single bistable element [25]) and the cou-
pling. The effect is qualitatively similar to that observed
at extremely low and high noise levels insofar as the dy-
namics tends to that of the simple harmonic oscillator
and the output SNR approaches the input SNR. This is
the central point of this paper: for moderate input noise
levels, the SNR at the output of a nonlinear dynamic el-
ement can be brought closer to the response of a linear
system by incorporating the element into a coupled array.

Limitations of the theoretical description

Our theoretical calculations involve several levels of ap-
proximation. First, we use adiabatic elimination to re-
duce a system of N coupled differential equations to an
equation in one variable [Egs. (17) with (18) or (23)].
This approximation predicts that the long-time solution
of the Fokker-Planck equation of the reference element,

il ,II/],’I\\: ’/////\“

lj
I{" I""III 7
/r////l/lll[ I/ Y ,,,,\ N

NI
', Yy o)l 1
llll[é’”lllll//%f;'l;llll”
,,

a phase-dependent probability density function, is the
same as that of the FPE of a one-variable equation. We
can test the accuracy of this approximation by compar-
ing the phase-dependent probability density functions of
the time series of the simulated N-variable and reduced
one-variable systems. Figure 5 shows this comparison for
a bistable-bath system. As we increase Ji ;-1, the dif-
ference between the solutions of the three-variable and
one-variable FPE’s grows. This is not surprising, since
the Jy ;>; multiply terms in the N = 3 generalization of
(23) which are only approximations.

The second approximation allows us to cast the re-
duced one-variable system in the form of system (1) with
N = 1. This approximation works well for monostable-
bath systems. We illustrate the accuracy of this ap-
proximation by comparing the phase-dependent proba-
bility density functions of the time series of the simulated
N-variable and the two one-variable systems. Figure 6
shows the effects of the first and second approximations
for a monostable-bath system. The first approximation
gives good agreement, and adding in the second approx-
imation does not significantly worsen the agreement.

A third approximation in our theory occurs when we
use the approach of [17] to compute the output SNR
based on the shape of the potential. We illustrate this
in Figure 7, where we compare the SNR resulting di-
rectly from a simulation of the N-variable system (1),
the SNR’s resulting from simulations of the reduced one-
variable system (17) and (18) as well as the simplified
system using (19). We also plot on this figure the the-
oretical SNR obtained by applying the approach of [17]
to the simplified system to obtain (32)-(34). The four
curves are seen to be in very good agreement.

IV. TUNING SYSTEM PARAMETERS

A positive (negative) coupling corresponds to an ex-
citatory (inhibitory) synapse in a neural network, or a
ferromagnetic (antiferromagnetic) interaction in a mag-
netic spin system. The signs of the coupling terms af-
fect whether coupling will increase or decrease the out-
put SNR of the reference element. As mentioned earlier,
choosing Jy ;51 > 0 and J;»1,; < 0 gives the greatest
SNR enhancement. Figure 8 illustrates this effect. In
fact, the theory correctly predicts the relative positions

FIG. 5. The upper surface
of each pair shows the phase-
dependent probability density
P(u,,¢) for the bistable-bath
” N = 3 system. The lower sur-

'Illll " R face shows the difference be-
””””/ '”I",&\I'ZZI S tween the N = 3 system (1) and
the reduced one-variable sys-
tem (17) and (23), using the
same scale, but offset by —0.2.
From left to right, Ji:>1 = 5,
10, 20. J;; = 1500 (1. > 1).
D = 200. ¢ = wtmod2n. Other
parameters as in Fig. 2.
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FIG. 6. Upper surface: phase-dependent probability den-
sity P(u1, ¢) for the monostable-bath N = 2 system. Middle
surface: difference between the N = 2 system (1) and the
reduced one-variable system (17), (18), offset by —0.2. Lower
surface: difference between the reduced one-variable system
and the simplified N = 1 system (19), (26)—(29), offset by
—0.4. D = 200. ¢ = wtmod2w. Other parameters as in
Fig. 2.

of all the curves in the figure.

The output SNR shows a maximum not only as noise
strength is varied, but also as we vary several of the sys-
tem parameters. Figure 9 shows tuning of the system
by varying the interelement coupling strengths. The fact
that there is an optimal coupling strength for maximizing
the output SNR agrees with what we have seen in chains
of Duffing oscillators with local linear coupling, making
it a robust phenomenon [26,27]

Figure 10 shows tuning as a function of bath element
self-coupling, J22. The SNR passes through a maximum
as a function of J2. Another interesting phenomenon is
apparent when we compare the results for the two values
of Jy2 shown. For J;2 = 100, the (binary output) SNR
surface has an absolute maximum, while for J;2 = 251
it approaches infinity as D — 0 with J22 =~ 1000. The
difference is that for the higher J;; value, the motion
in the bath oscillator can “deterministically” switch the
reference oscillator. For J; < 1000, the isolated bath
oscillator potential has a single well. The bottom of the
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FIG. 7. Testing theoretical prediction of SNR. Uppermost
curve: input SNR. Solid lower curves: output SNR of N = 2
system [by simulation of (1)], reduced one-variable equations
(17) and (18), and simplified one-variable equations (17) and
(19). Dotted curve: theoretical computation of output SNR
of N = 2 system using (32)-(34). Parameters as in Fig. 2.

well is quite flat for J23 =~ 1000. This motion gets ampli-
fied by the large coupling strength and deterministically
switches the reference element. Indeed, in the absence
of coupling the reference oscillator switches deterministi-
cally for ¢ > 117. Of course, when deterministic switching
occurs we no longer see a stochastic resonance.

V. DISCUSSION: THEORETICAL LIMIT ON
IMPROVING SNR

The output SNR alone is not a complete measure of
the performance of a signal processing system. For sig-
nal estimation, relevant performance measures are mean

15
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FIG. 8. Effect of signs of couplings. Uppermost curve:
input SNR. Lower curves (lowest to highest): Output SNR
for (Jiz,J21) = {(—200,—100), (—200,4+100), (+200,+100),
(+200,-100)}. N = 2. Other parameters as in Fig. 2.
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FIG. 9. Coupling tuning curve. Maximum SNR as a func-

tion of coupling strength Ji2. N = 2. J22 = 1500. Other
parameters as in Fig. 2.

square error or Bayesian tests [3]. For example, a nonlin-
ear signal processor may output a signal that has infinite
SNR but is useless because it has no correlation with the
input signal. Such a system would be one which simply
generates a sine wave at the signal frequency, totally ig-
noring its input. For signal detection, one must consider
detection statistics: probability of detection and proba-
bility of false alarm. Such statistics may be summarized
in plots of detection probability versus false alarm proba-
bility, known as receiver operating characteristic (ROC)
curves. Presenting ROC curves is beyond the scope of

J =100.
12

this paper; however, we have found that the ROC curves
follow the SNR curves, exhibiting a maximum in perfor-
mance at a critical noise strength [27].

The optimal filter for detecting a known signal in
Gaussian white noise is the correlation receiver or
matched filter, which is a linear filter whose output is
compared to a threshold [3]. The optimal estimator of a
linearly modulated signal in Gaussian white noise is also
a linear filter [3]. For linear filters, the output SNR equals
the input SNR if the SNR’s are measured in a sufficiently
narrow band around the signal frequency. This suggests
why a stochastic resonator circuit driven by a sine wave
in Gaussian white noise has an output SNR bounded by
the SNR obtained by a linear filter; i.e., the input SNR.

On the other hand, the output SNR of a nonlinear filter
may exceed its input SNR. The bandpass limiter is a cir-
cuit that illustrates this effect. It consists of a bandpass
filter followed by a threshold (or infinite limiter) circuit.
The bandpass filter removes all signals outside a narrow
band around the signal frequency, and the threshold cir-
cuit converts the analog output of the bandpass filter to
a two-level output (+V if the bandpass filter output is
positive, —V if negative). This nonlinear device improves
the SNR of a signal by tacitly assuming that the signal
power exceeds the noise power. When the assumption
holds, the SNR increases by several dB. However, when
the assumption fails, the SNR decreases slightly [28]. The
fact that there is a positive SNR gain only above a cer-

J =251.1886
12

FIG. 10. Binary-filtered out-
put SNR as a function of noise
strength D and self-coupling
Ja22, displayed as surface and
contour plots for two values of
Ji2. N = 2. Other parameters

J =251.1886
12
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tain threshold input SNR (the “threshold effect”) is a
universal phenomenon generic to all nonlinear processors
[3]-

When we drive one of our bistable nonlinear dynamic
elements with a sine wave plus noise that has most of
its energy concentrated around the signal frequency, the
system should behave somewhat like the bandpass lim-
iter. The limiting effect is due to the hyperbolic tangent
function. In Figure 11, we see evidence of two threshold
effects: one concerning q and one concerning both ¢ and
D. First, if the signal strength q is too low, positive SNR
gain is not possible. Second, even for larger values of g,
we see that significant SNR gain does not occur if the
input SNR is too low. This second effect corresponds to
the threshold effect seen in the bandpass limiter.

Gang et al., have also observed a positive SNR gain
for a stochastic resonance circuit driven by band-limited
noise [9]. Similar gains have been predicted by Hanggi
et al. for the driven Kramers equation at moderate to
large friction [8], and by Kiss [13] in a threshold element
subject to an aperiodic signal in noise.

Another factor affecting SNR enhancement in coupled
arrays is whether the noise at different elements is corre-
lated or uncorrelated. In this work, we have considered
the case of correlated (in fact, identical) noise at each
element. This corresponds to the situation where noise
is coming from an external source. This is the most chal-
lenging situation in which to try to enhance output SNR
by using a coupled array. To see why, consider the sit-
uation where the noise at different elements is uncorre-
lated [26,27,29,30]. This happens, for example, when the
noise comes from sources internal to each element. In this
case, using many elements, coupled or not, and summing
their outputs enhances SNR because signal components
add coherently, while (uncorrelated) noise components
add incoherently. In the correlated-noise case, one does
not have this effect to exploit, so it is rather surprising

0.5
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5 75 10 125 15
Input SNR

175 20 225

FIG. 11. Output SNR may exceed input SNR for band-
pass-filtered noise (pass band: 0.72w to 1.3w). For each curve,
signal strength ¢ was held fixed, while noise strength D was
varied. From lowest to highest, ¢ = 120, 240, 480. Other
parameters as in Fig. 1.

that coupling enhances SNR in this case at all. But we
have seen that it does, and in fact this effect also con-
tributes to enhancing the output SNR in coupled arrays
with uncorrelated noise [26,27].

Linear versus nonlinear coupling can also make a great
deal of difference in certain cases. With uncorrelated
noise, linear coupling of the form J;;(u; — u;) can boost
the SNR of the response of an element coupled into a
chain, and in fact synchronizes the elements of the chain
when the noise strength is at the value that maximizes
the SNR [26,27]. However, such linear coupling has little
to no effect on identical oscillators subject to correlated
noise. In contrast, nonlinear coupling can completely re-
move oscillator nonlinearities for some configurations of
identical oscillators subject to correlated noise. For ex-
ample, this occurs for a system of the form (1) consist-
ing of a pair of identical oscillators (N = 2, C; = Cj,
R]_ = Rz, J11 = ng) with couplings le = J21 = —J11
and identical initial conditions on u; and u,. In this case,
the nonlinear coupling causes the two nonlinear elements
to perform exactly like a linear system, which is optimal
for signal-processing tasks.

Although the cases of correlated vs uncorrelated noise
and linear vs nonlinear coupling differ, they still have
much in common. The early work of Jung et al. [29] dealt
with ensembles of linearly coupled bistable elements sub-
ject to uncorrelated noise. They observed a performance
enhancement as a function of noise and/or coupling anal-
ogous to our results for nonlinear coupling and correlated
noise.

VI. SUMMARY

We have seen that the performance (measured via out-
put SNR) of a nonlinear dynamic system or device can
be improved by coupling the device in an array, with the
coupling coefficients carefully selected. Coupling makes
the system as a whole respond more like a linear system
over a range of noise strengths. Violating the slaving
condition by increasing the time constants of the bath
elements also appears to “linearize” the system, with the
SNR gain approaching unity.

The optimal choice (with regard to magnitude and
sign) of the coupling coefficients Jy;, J;; (2 > 1) appears
to be that which brings about a cooperative increase in
the effective amplitude § and a decrease in the barrier
height of the effective potential through a decrease in 3.
Even though the theory does not always provide an ac-
curate prediction of the response of (1), it nonetheless
provides a reliable guide to selecting the optimal cou-
pling coefficients for enhanced response. Finally, we note
that both the noise and the coupling contribute to the
cooperative effect of enhanced response.

Can we apply coupling to practical systems? Nonlinear
detectors of weak signals embedded in background noise
exhibit SR: For example, Hibbs et al. [31] have shown
that an rf superconducting quantum interference device
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magnetometer operated in the hysteretic mode displays
SR. SR-like effects have also been observed in sensory
neurons [32] and predicted in simple models of neural
dynamics [33,15]; this has followed speculation that noise
may play a constructive role in the response of neural net-
works [34]. Coupling such nonlinear dynamic elements
may enhance their output SNR. From a signal process-
ing perspective, we have pointed out that a linear filter
is optimal for detecting a sine wave in Gaussian white
noise. Thus, the linearizing effect of replacing a single
nonlinear dynamic element by a coupled array may help
systems that rely on nonlinear detectors or transducers
to approach optimal performance.
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